

Flying with Gas

A novel method in assessing Altitude associated changes in Atmospheric pressure and its correlation with Intraocular pressure in gas filled eyes post retinal surgery In different Geographical areas. UK and UAE data Phase 1

Author :

Dr Alaa Attawan

Consultant Ophthalmologist, cataracart and Vitreo-Retina Surgeon Moorfields Eye Hospital. UK / UAE Co-Author:

Dr. Mahmut Dogremaci Consultant Ophthalmologist and Vitreo-Retina surgeon. Cambridge UK.

No financial disclosure

Learning from patients !

- CASE 1 UK Based
- 65 YO Male
- Successful RRD repair with PPV and 20% SF6 gas
- 9 days post –op patient had family emergency and has t fly home (Europe)
- IOP 17mmHg, 20% gas fill and flat retina
- Am I Safe to fly ?

- CASE 2 UAE based
- 70 YO female with FTMH
- Lives on 13th floor in skyscraper
- CAN SHE HAVE GAS INSTEAD OF SILICON OIL ?

Background

- Gas tamponades are effective agents in retinal surgery.
- Patients are routinely advised against air travel before the complete absorption of intraocular gas.
- But should every eye with gas tamponade avoid high altitude?

Aim and method

The aim

present a novel method to determine the safety of different altitudes travelled by patients with intra ocular gas tamponades

- The method
 - Measure atmospheric pressure changes at different altitudes.
 - Computing their effect on IOPs in eye model with various levels of gas fill

Alterations in atmospheric pressure

- Atmospheric pressures could change in relation to altitudes and air densities.
 - Examples of different altitudes include:
 - High mountains
 - High buildings
 - Aeroplanes cabins (pressurised and nonpressurised)
 - Over and Underground train tunnels.

EVOLVING PRACTICE OF OPHTHALMOLOGY MIDDLE EAST CONFERENCE

Monitoring atm pressure alteration

to monitor atmospheric pressure changes we used BMP 180 barometer

switch indicator Memory card & slot

BMP 180 barometer built in different shapes and forms to fit the

purpose.

10TH EVOLVING PRACTICE OF OPHTHALMOLOGY MIDDLE EAST CONFERENCE

 \rangle

Computing alteration effect

- To compute the corresponding changes in IOP we used an eye model
- A 5 ml chamber with expandable rubber surface.
- The chamber was filled with air and different volumes of 20% SF6
- placed in a jar vacuumed to various levels of atm pressure
- The expansion in the rubber surface was monitored using IR sensors
- Linear regression equation was used to estimate IOP changes for different volumes of gas at different levels of atm pressure.

10TH EVOLVING PRACTICE O MIDDLE EAST CONFERENCE

Results

- Results for UK. Under Ground & over ground train trips.
- International flight from LHR AD airport
- different ROUTES AND ALTITUDES uae
- Jebel hafeet
- AA –AD / AA DXB
- Skyscrapers

UK Data

On a slow over ground train

Low

A patient with 50% fill of SF6 20% with a baseline IOP of 20mmHg will have an IOP of 20.4mmHg at his point of arrival.

Low risk

RISK

On a LONDON underground tube train

A patient with 50% fill of SF6 20% and a baseline IOP of 20mmHg will have an IOP of 21.40 for 60 seconds.

Low Risk

			11 12	100% fill 90% fill 80% fill 50% fill 50% fill 20% fill 0% fill 0% fill
				tuston
DEPARTURE	Kings Cross station	LEICE		e Brian Derando
DEPARTURE ARRIVAL	Kings Cross station Tottenham Hale Station	LEICESTE	R SOURS	Cator Cator
DEPARTURE ARRIVAL TRANSPORT	Kings Cross station Tottenham Hale Station Underground tube	LEICESTE	R SQUARE	Petitol Director
DEPARTURE ARRIVAL TRANSPORT ALTITUDE	Kings Cross station Tottenham Hale Station Underground tube Low	LEICESTE	R SQUARE ST HERE	
DEPARTURE ARRIVAL TRANSPORT ALTITUDE DISTANCE	Kings Cross station Tottenham Hale Station Underground tube Low 6 miles		R SOLARE ST ADDRESS	
DEPARTURE ARRIVAL TRANSPORT ALTITUDE DISTANCE DURATION	Kings Cross station Tottenham Hale Station Underground tube Low 6 miles 12 minutes		R SQUARE	
DEPARTURE ARRIVAL TRANSPORT ALTITUDE DISTANCE DURATION SPEED	Kings Cross stationTottenham Hale StationUnderground tubeLow6 miles12 minutes15.5 miles/hr		R SOLARE SE CONTRACTOR	
DEPARTURE ARRIVAL TRANSPORT ALTITUDE DISTANCE DURATION SPEED IOP CHANGE 50% gas fill	Kings Cross station Tottenham Hale Station Underground tube Low 6 miles 12 minutes 15.5 miles/hr 1.39 mmHg		R SQUARE	
DEPARTURE ARRIVAL TRANSPORT ALTITUDE DISTANCE DURATION SPEED IOP CHANGE 50% gas fill PACE OF IOP CHANGE 50% gas fill	Kings Cross stationTottenham Hale StationUnderground tubeLow6 miles12 minutes15.5 miles/hr1.39 mmHg2.78 mmHg/minute		R SQUARE DE COMO	
DEPARTURE ARRIVAL TRANSPORT ALTITUDE DISTANCE DURATION SPEED IOP CHANGE 50% gas fill PACE OF IOP CHANGE 50% gas fill DURATION OF MAX IOP	Kings Cross stationTottenham Hale StationUnderground tubeLow6 miles12 minutes15.5 miles/hr1.39 mmHg2.78 mmHg/minute30-60 seconds		R SQUARE	
DEPARTURE ARRIVAL TRANSPORT ALTITUDE DISTANCE DURATION SPEED IOP CHANGE 50% gas fill PACE OF IOP CHANGE 50% gas fill DURATION OF MAX IOP REASON FOR IOP CHANGE	Kings Cross stationTottenham Hale StationUnderground tubeLow6 miles12 minutes15.5 miles/hr1.39 mmHg2.78 mmHg/minute30-60 secondsAltitude and air decompresion		R SQUARE	

On an over ground fast train departing from Darlington to London

A patient with 50% fill of SF₆ 20% and a baseline IOP of 20mmHg will have an IOP of 23.00 for 60 seconds.

Low Risk

On a commercial airliner travelling between London Heathrow and AD Airports

London Heathrow – AD Int. Airport
Boeing 737
3432 Miles
6.5 hours
700 miles/hr
47.53 mmHg
High

Cabin pressure is maintained at 6000 – 8000 ft altitude

IOP with different SF6 volumes

$$LHR - AD$$

A patient with 50% fill of SF6 20%

will have an IOP rise of + 47 mmHg for 4.5 hours - High Risk 10TH EVOLVING PRACTICE OF OPHTHALMOLOGY MIDDLE EAST CONFERENCE

UAE Data

3 Floor Villa – Al Ain

A patient with 50% fill of SF6 20% will have an IOP rise of + 1.8 mmHg – Low Risk

Jebel Hafeet

4000 ft above see level

Skyscraper

- 63 floors / 991 ft
- - iop:
- @ Ground floor, 5th , 10th 15th , 20th , 30TH & 50TH..

1	

Floor		IOP mmHg
	0	19
	5	22.6
	10	24.9
	15	29.1
	20	33.5
	30	37
	50	40.2

Conclusion

Low risk:

- Train, car on FLAT ground travel
- 2 3 Foor villa
- skyscrapers up to 10 floors

Medium and high risk:

- Air travel with gas fill <10% Medium
- Air travel with gas fill > 10% High
- High building above 10 floors with 50% gas fill High

limitations

FACTORS EXCLUDED:

- Base line IOP (we assumed 20 mmHg as base line IOP).

- Atmospheric temperature.

- Patients Bio-physiology(COPD, Asthma). i.e O2 & Nitrogen concentration not counted for.

Theoretical solutions (phase 2)

Mobile eye module with IOP measure

Biophysical analysis of algorithm (formula) to correlate psi with IOP

 $E = \frac{RT}{7F} ln \frac{C_0}{C_1}$

Real time IOP measure

Thank you &

discussion