

Transcanalicular Laser assisted and External Dacryocystorhinostomy Anatomical and Functional success in Acquired Nasolacrimal Duct Obstruction: Systematic review and meta-analysis

Khalid W. Helmi^{1,2}, Ahmed S. Abdulhamid^{1,2}, Mohammed S Alomari^{1,2}, <u>Ali S Alsudais^{1,2}</u>, Badran S Alqurashi³, Abdullah Alsharif^{1,2}, Abdulrahman H Alzahrani^{1,2}, Abdulrahman M. Bahlaq^{1,2}, Mohammed F. Qutub^{1,2,4}, Hashem S. Almarzouki^{1,2,4}

1 King Saud bin Abdulaziz University for Health Sciences, College of Medicine, Jeddah, Saudi Arabia

2 King Abdullah International Medical Research Center, Jeddah, Saudi Arabia

3 College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

4 Ministry of the National Guard-Health Affairs, Department of Ophthalmology, Jeddah, Saudi Arabia

Outline

■ Nasolacrimal Duct Obstruction (NLDO) is a condition characterized by blocked tear ducts, resulting in symptoms such as epiphora and dacryocystitis.

NLDO has a relatively high incidence rate of **20.24 per 100,000**, indicating its common occurrence.

INLDO subtypes:

- **Primary NLDO,** an idiopathic clinical syndrome.
- Secondary NLDO, due to trauma, infection, mechanical factors, neoplasms, or inflammation.
- The definitive management approach for Primary NLDO is <u>Dacryocystorhinostomy (DCR)</u>, which can be performed using different techniques.
 - (External VS. Transcanalicular laser assisted VS. Endoscopic Endonasal DCR).

Figure 1: Nasolacrimal Duct Obstruction.

Dacryocystorhinostomy (DCR) types:

Figure 2: External dacryocystorhinostomy. (EX-DCR)

Figure 3: Transcanalicular laser dacryocystorhinostomy. . (TC-DCR)

Figure 4: Endoscopic endonasal dacryocystorhinostomy. . (EN-DCR)

Comparison Between **Dacryocystorhinostomy (DCR)** types:

	EXTERNAL DACRYOCYSTORHINOSTOMY (EX- DCR)	TRANSCANALICULAR LASER DACRYOCYSTORHINOSTOMY (TC-DCR)					
PROS	 I. Excellent success rates reported to be up to 90-95%. II. Direct visualization of lacrimal sac abnormalities. 	 I. Minimally invasive procedure Better aesthetic outcomes II. Shorter intraoperative duration III. Lower perioperative complications 					
CONS	I. Longer intraoperative durationII. Higher perioperative complications	I. Lower success rate					

 Table 1: Comparison between External dacryocystorhinostomy (EX-DCR) and Transcanalicular laser dacryocystorhinostomy (TC-DCR)

□Significance:

- Previous review was limited.
- No Consensus over the preferred surgical techniques.

🛛 Aim:

To examine the efficacy (anatomical and functional success rates) and safety (intraoperative complications, postoperative complications, and surgical time) of TC-DCR versus EX-DCR techniques specifically for patients with Primary and secondary NLDO.

10TH EVOLVING PRACTICE OF OPHTHALMOLOGY

External dacryocystorhinostomy (EX-DCR) MIDDLE EAST CONFERENCE Transcanalicular laser dacryocystorhinostomy (TC-DCR)

Eligibility criteria:

PICOS QUESTION									
Population	Patients with Primary and Secondary Acquired Nasolacrimal Duct Obstruction (NLDO).								
Intervention	Transcanalicular laser dacryocystorhinostomy (TC-DCR)								
Comparison	External dacryocystorhinostomy (EX-DCR)								
Outcome	 efficacy (anatomical and functional success rates) safety (intraoperative complications, postoperative complications, and surgical time) 								
Study	 Randomized controlled trials (RCT) Quasi-experimental studies Observational studies 								

Table 2: Inclusion criteria

□ This study is conducted according to a pre-specified PROSPERO (CRD42023260855) and reported using PRISMA guidelines.

□Information sources and **search strategy**:

- Databases: MEDLINE, EMBASE, and CENTRAL, accessed by OVID.
- Manual: Citations.

Last search was on February 02, 2023.

Selection process

- EndNote was used to remove duplicates
- Two independent reviewers conducted title and abstract screening, followed by a full-text assessment of eligible studies.
- Discrepancies were resolved through consensus or discussion with a third reviewer.

Data extraction

- Two reviewers, independently, performed data extraction from eligible studies using a pre-specified data collection sheet.
- Discrepancies were resolved through consensus or discussion with a third reviewer.

Quality assessment:

- **Risk of bias within studies:** JBI critical appraisal for observational studies and the revised Risk of Bias 2 (RoB 2) tool for randomized controlled trials.
- Publication bias: Visual inspection of the funnel plot.
- **Certainty of evidence:** GRADE criteria.

OMeta-analysis:

- Random-effects model.
- Significance level: 95% with P-value <0.05 as a threshold.
- Effect measures: Risk Ratios.
- Heterogeneity: I² for heterogeneity and the P-value of Chi².

Subgroup analysis:

• Multi-diode and Single-diode TC-DCR for anatomical success and functional success.

Results: study characterstics

- Number of studies: 10 studies.
- □ Total number of participants: 709 patients.
- □ Intervention (Laser):
 - Multi-diode lasers: 6 studies
 - Single-diode: 4 studies
- □ Mean participant's age: 43.2 to 57.8 years.

Figure 5: study flow diagram

Results: risk of bias and publication bias

Studies included in analysis: 9 studies

Low risk of bias: 5 studies.

Moderate risk of bias: 2 studies.

□ High risk of bias: 2 studies.

Observational studies quality assessment									
<u>Domain</u>	<u>Total</u>	Overall risk of bias							
Bulut et al. 2021	6/11 (54%)	Moderate risk							
Buttanri et al.	7/11 (63.6%)	Moderate risk							
2014									
Gomez et al. 2014	8/11 (72.7%)	Low risk							
Mutlu et al. 2022	9/11 (81.8%)	Low risk							
Yener et al. 2020	5/11 (45.4%)	High risk							
Yilmaz et al. 2015	9/11 (81.8%)	Low risk							
Quasi-ex	perimental studies quality	assessment							
Derya et al 2013	9/9 (100%)	Low risk							
Yeniad et al. 2012	8/9 (88.8%)	Low risk							
Randomized controlled trial quality assessment									
Mourya et al. 2017		High risk							

Table 3: Risk of bias assessment

Results: meta-analysis

□ Anatomical success

Favorable for EX-DCR

 significant heterogeneity l²=67%. Significant P-value of Chi² = 0.01

□Subgroup analysis:

- (RR = 0.75, 95% CI 0.55–1.02; P = 0.07; I² = 73%)
- Multidiode and Single diode TC-DRC
- EX-DCR is better than Multidiode, albeit not significant and high heterogeneity (P value= 0.07, l²=73%)

	TC-DCR EX-DCR		Risk Ratio	Risk Ratio					
Study or Subgroup	Events Total		Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl		
2.1.1 Multi-Diode									
Bulut et al. 2021	18	31	64	68	13.3%	0.62 [0.45, 0.84]			
Buttanri et al. 2014	7	16	17	18	5.7%	0.46 [0.26, 0.82]			
Yeniad et al. 2012	16	19	17	19	16.2%	0.94 [0.73, 1.21]			
Yilmaz et al. 2015	23	30	27	33	15.9%	0.94 [0.73, 1.21]			
Subtotal (95% CI)		96		138	51.1%	0.75 [0.55, 1.02]	\bullet		
Total events	64		125						
Heterogeneity: Tau ² = 0.07; Chi ² = 11.30, df = 3 (P = 0.01); l ² = 73%									
Test for overall effect: Z	z = 1.84 (I	$P = 0.0^{\circ}$	7)						
0.4.0 Circula Diada									
2.1.2 Single-Diode									
Mourya et al. 2017	68	81	83	87	25.4%	0.88 [0.79, 0.98]			
Mutlu et al. 2022	27	30	29	30	23.5%	0.93 [0.81, 1.07]			
Subtotal (95% CI)		111		117	48.9%	0.90 [0.83, 0.98]	\bullet		
Total events	95		112						
Heterogeneity: Tau ² = 0.00; Chi ² = 0.43, df = 1 (P = 0.51); l ² = 0%									
Test for overall effect: Z	z = 2.50 (I	P = 0.0	1)						
Total (95% CI)		207		255	100.0%	0.84 [0.72, 0.97]			
	450	207	~~~	233	100.070	0.04 [0.72, 0.97]	•		
I otal events 159 237									
Heterogeneity: Tau ² = 0.02; Chi ² = 14.96, df = 5 (P = 0.01) $I^2 = 67\%$									
Test for overall effect: Z = 2.31 (P = 0.02) EX-DCR TC-DCR									
Test for subgroup differences: $Chi^2 = 1.24$, df = 1 (P = 0.26), l ² = 19.5%									

Figure 6: forest plot for Anatomical success rates

External dacryocystorhinostomy (EX-DCR) Transcanalicular laser dacryocystorhinostomy (TC-DCR)

Results: meta-analysis

Functional success

Favorable for EX-DCR

 Moderate heterogeneity l²=44%. Not significant P-value of Chi² = 0.11

Subgroup analysis:

- (RR = 0.80, 95% CI 0.63–1.02; P = 0.07; I² = 61%)
- Multidiode TC-DRC
- EX-DCR was superior to Multidiode TC-DRC, albeit not significant and high heterogeneity (P value= 0.07, l²=61%)

TC-DCR EX-DCR		R		Risk Ratio	Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl		
2.2.1 Multi-Diode									
Bulut et al. 2021	17	31	62	68	8.7%	0.60 [0.43, 0.83]			
Gomez et al. 2014	27	34	41	46	17.3%	0.89 [0.73, 1.09]			
Yilmaz et al. 2015 Subtotal (95% Cl)	22	30 95	27	33 147	11.7% 37.7%	0.90 [0.68, 1.17] 0.80 [0.63, 1.02]	•		
Total events	66		130						
Heterogeneity: Tau ² = 0 Test for overall effect: 2).03; Chi² ː = 1.78 (l	= 5.18 - = 0.0	, df = 2 (P 7)	9 = 0.07	′); I² = 61%	, 0			
2.2.2 Single-Diode									
Derya et al. 2013	17	25	25	29	9.7%	0.79 [0.58, 1.07]	_ - - - +		
Mutlu et al. 2022	27	30	29	30	24.9%	0.93 [0.81, 1.07]			
Yener et al. 2020 Subtotal (95% CI)	54	63 118	69	74 133	27.6% 62.3%	0.92 [0.82, 1.03] 0.91 [0.84, 0.99]	•		
Fotal events 98 123 Heterogeneity: Tau ² = 0.00; Chi ² = 1.15, df = 2 (P = 0.56); l ² = 0% Test for overall effect: Z = 2.09 (P = 0.04)									
Total (95% CI)		213		280	100.0%	0.87 [0.78, 0.97]	•		
Total events 164 253 Heterogeneity: Tau ² = 0.01; Chi ² = 8.94, df = 5 (P = 0.11); I ² = 44% Test for overall effect: Z = 2.54 (P = 0.01) Test for subgroup differences: Chi ² = 0.98, df = 1 (P = 0.32), I ² = 0%						%	0.1 0.2 0.5 1 2 5 10 EX-DCR TC-DCR		

Figure 7: forest plot for Functional success rates

External dacryocystorhinostomy (EX-DCR)

Transcanalicular laser dacryocystorhinostomy (TC-DCR)

Results: meta-analysis

Outcomes	Superiority	Effect size	95% Cl	P-value	 ²	GRADE
Anatomical Success	EX-DRC > TC-DRC	RR: 0.84	0.72–0.97	0.02	67%	Low
Functional success	EX-DRC > TC-DRC	RR: 0.87	0.78–0.97	0.01	44%	Moderate
Operative time	EX-DRC < TC-DRC	SMD: -2.42	-2.92 – -1.91	< 0.00001	59%	Moderate
Intraoperative Complications	EX-DRC < TC-DRC	RR: 0.16	0.06-0.43	0.0003	0%	Low
Postoperative Complications	EX-DRC > TC-DRC	RR: 1.44	0.55–3.78	0.46	65%	Low

Table 4: summary of the results of the meta-analysis

• **EX-DCR:** External dacryocystorhinostomy

• **TC-DCR:** Transcanalicular laser dacryocystorhinostomy

o RR: Risk Ratio

• **SMD:** Standard mean difference

Discussion

Summary of the evidence:

- **EX-DCR** demonstrated **significantly higher anatomical success rates** compared to TC-DCR, consistent with previous studies.
 - However, when comparing EX-DCR with Multidiode TC-DCR, there was <u>no statistically</u> <u>significant</u> difference in anatomical success.
- **EX-DCR** also **showed significantly better functional success rates** compared to TC-DCR, as supported by previous studies.
 - Contrary to our findings, some previous studies indicated that Multi-Diode TC-DCR and EX-DCR had <u>similar rates</u> of success in both anatomical and functional outcomes.
- TC-DCR showed advantages over EX-DCR with significantly shorter operative time and fewer intraoperative complications, as supported by previous studies.

Discussion

Strengths:

- Original meta-analysis.
- Our findings have raised the question of whether Multidiode is superior to Single-Diode TC-DCR, prompting the need for further investigation in this area.

Limitations:

- Low number of high-quality RCTs
- Lack of Baseline Data
- Missing Ethnicity Information
 - Ethnicity may impact anatomical variations and affect surgical outcomes.

Conclusion

Implications on practice:

- Choice of Technique:
 - The findings suggest that EX-DCR may be the preferred technique for managing NLDO in terms of anatomical and functional success rates. However, TC-DCR has advantages in terms of shorter operative time and fewer intraoperative complications.

• Individualized Approach:

• Clinicians should consider **patient-specific factors**, when selecting the appropriate technique.

Implications on research:

• Future RCTs should implement a rigorous pre-study methodology and a sufficient followup period.

References

Thank You!

Ali Alsudais, Sixth-year Medical student, King Saud bin Abdulaziz University for health sciences, Jeddah, Saudi Arabia

Scan me!

