

#### VISUAL AND REFRACTIVE OUTCOMES OF COMBINED EXCIMER LASER ABLATION WITH ACCELERATED CORNEAL COLLAGEN CROSS-LINKING IN SUBCLINICAL KERATOCONUS

Presented by: Prof Talal A. Althomali Taif university Tadawi surgical center

## **Financial Disclosures**

• No financial to be disclosed

#### Introduction

- Laser in situ keratomileusis (LASIK) is contraindicated in patients with subclinical keratoconus, due to the high risk of progression to manifest keratectasia.
- While these patients could be offered photorefractive keratectomy (PRK)<sup>1</sup>, the risk of progression to keratoconus after PRK still prevails.
  - As such, excimer laser ablation procedures are typically avoided in eyes with subclinical keratoconus.
- Corneal collagen cross-linking (CXL) mediated by riboflavin and UVA is a safe and efficacious procedure in halting the progression of keratoconus.
- Combining topography-guided PRK with CXL potentially decreases corneal irregularity, improves visual acuity, and, at the same time halts the progression of keratoconus.

#### Purpose

To evaluate visual, refractive, and safety

 outcomes of combined, same day
 topography-guided PRK followed by
 accelerated CXL in patients with subclinical
 keratoconus.

#### Methods

STUDY DESIGN

Retrospective.

Subclinical keratoconus patients aged >18 years exhibiting stable corneal topography and refraction for at least 1 year; estimated residual bed thickness >350 µm.

RECRUITMENT

**CRITERIA** 

#### STUDY POPULATION

75 consecutive patients (140 eyes) who underwent simultaneous topography-guided PRK with accelerated CXL (2.7 J/cm<sup>2</sup>) between January 2011 and February 2013 and completed 10-year follow-up.

#### OUTCOME MEASURES

Uncorrected and corrected visual acuity (UDVA, CDVA), manifest refraction, and keratometry measured at baseline and at 1, 3, 6, and 12 months postoperatively.

### **Results: Summary Statistics**

All refractive, keratometric, and uncorrected visual acuity parameters showed a statistically significant improvement from baseline to postop 12 months.

| Parameters<br>(N = 140) | Preoperative<br>(Mean ± SD) | Postoperative (Mean ± SD) |                 |              |              |
|-------------------------|-----------------------------|---------------------------|-----------------|--------------|--------------|
|                         |                             | 1 month                   | 3 months        | 6 months     | 12 months    |
| UDVA (logMAR)           | 0.30 ± 0.39                 | 0.03 ± 0.10               | 0.05 ± 0.17     | 0.04 ± 0.15  | 0.03 ± 0.11  |
| CDVA (logMAR)           | $0.00 \pm 0.00$             | 0.03 ± 0.09               | $0.04 \pm 0.17$ | 0.04 ± 0.15  | 0.03 ± 0.11  |
| Flat K (D)              | 44.05 ± 1.74                | 41.17 ± 4.09              | 41.54 ± 2.00    | 41.50 ± 2.08 | 41.53 ± 2.04 |
| Steep K (D)             | 45.31 ± 1.67                | 42.33 ± 4.21              | 42.44 ± 2.03    | 42.34 ± 2.02 | 42.25 ± 2.09 |
| Average K (D)           | 44.68 ± 1.63                | 41.75 ± 4.14              | 41.99 ± 2.01    | 41.92 ± 2.01 | 41.89 ± 2.06 |
| Corneal Astigmatism (D) | 1.26 ± 0.96                 | $1.16 \pm 0.71$           | 0.90 ± 0.45     | 0.85 ± 0.75  | 0.72 ± 0.44  |
| Refractive Cylinder (D) | -0.89 ± 0.71                | -0.61 ± 0.42              | -0.44 ± 0.36    | -0.30 ± 0.35 | -0.17 ± 0.32 |

N: Number of eyes; CDVA: Corrected distance visual acuity; UDVA: Uncorrected distance visual acuity; K: Keratometry; logMAR: Logarithm of the minimum angle of resolution; SD: Standard deviation.



#### **Results: Efficacy**

• At postoperative 12 months, 92.9% of eyes achieved UDVA of 20/25 or better.



# Results: Predictability

 Scatterplot of attempted versus achieved MRSE at postop 12 months.



Attempted Spherical Equivalent Refraction (D)

# Results: Predictability

 At postoperative 12 months, 79.3% of eyes were within ±0.5 D of attempted refractive correction and 94.3% of eyes were within ±1.00 D of attempted refractive correction.



Postoperative Spherical Equivalent Refraction (D)

#### **Results: Predictability**

• At postoperative 12 months, 82.9% of eyes had ≤0.25 D astigmatism.



# Results: Stability

- Mean MRSE improved statistically significantly from baseline to all postoperative time points.
- At postop 6 and 12 months, a slight improvement in MRSE was observed.



# Results: Safety

- 90.7% of eyes maintained their preoperative CDVA, and 3.6% of eyes lost more than 2 lines of CDVA.
- **Complications:** Mild corneal haze was observed in 10 eyes (7.14%) and corneal ectasia developed in 1 eye (0.7%) postoperatively.



# Results: Safety

• None of them developed ectasia after 10-year FU.

# Discussion

- It is postulated that energy settings may be lower for low-risk eyes than conventional cross-linking treatment for eyes with keratoconus (5.4 J/cm<sup>2</sup>).
- Due to the much lower severity of ectasia in eyes with subclinical keratoconus, a total energy of 2.7 J/cm<sup>2</sup> was used in the present study.
- Beyond 3 months, further improvement in the myopic refraction was observed at 6 and 12 months postoperatively.
  - It was potentially due to the gradual flattening of the cornea after the initial steepening associated with CXL.
- In one eye, ectasia developed during the 1-year follow-up.
  - The CXL procedure with a higher total energy of 7.2 J/cm<sup>2</sup> was repeated in this eye.
  - After repeat CXL, no further progression was observed until the last follow-up visit at 1 year.

### Discussion

- These findings demonstrate that the use of 2.7 J/cm<sup>2</sup> energy may not be adequate to halt the progression in patients with subclinical keratoconus.
- The standard protocol involving an irradiation dose of 5.4 J/cm<sup>2</sup> with 3 mW/cm<sup>2</sup> for 30 minutes or another value higher than 2.7 J/cm<sup>2</sup> might be more safe in eyes with subclinical keratoconus.
- Future studies are needed to evaluate the efficacy of a dose higher than 2.7 J/cm<sup>2</sup> to obtain more objective information.

#### Conclusion

Combined topography-guided PRK and accelerated CXL provided good visual and refractive outcomes, offering spectacle independence in subclinical keratoconus eyes. However, an irradiation dose higher than 2.7 J/cm<sup>2</sup> may be more appropriate to prevent the risk of keratoconus progression.

# **THANK YOU**